LumiTracker® Mito Rhodamine 123
Cat. # | Quantity | Price | Lead time | Buy this product |
---|---|---|---|---|
2958-1mg | 1 mg | – | in stock | |
2958-25mg | 25 mg | $105 | in stock |
Rhodamine 123 (Rh123) is a cationic green-fluorescent xanthene dye used to monitor membrane polarization in mitochondria and bacteria in live cell assays.
The dye distributes according to the negative potential of the membrane. Loss of potential will result in loss of the dye and, therefore, the fluorescence intensity. Like TMRE, Rhodamine 123 can be used to study mitochondrial function changes and cell viability in response to stimuli or pharmaceuticals of interest.
Rhodamine 123 is also used as a tracer dye to determine the rate and direction of membrane transport.
Absorbance and emission spectra of Rh123
Customers also purchased with this product
Copper(II)-THPTA catalytic buffer, 1.5x
Ready-to-use catalytic buffer containing сopper(II) and water-soluble THPTA ligand. It is suitable for click chemistry modification of proteins.Copper(II)-TBTA complex
A catalyst for click reaction. A stable copper(II) complex which must be converted to monovalent copper(I) in situ using reducing agents. The complex can be used to prepare a reaction buffer of any composition.LumiTracker® Mito Rhodamine 123
Rhodamine 123 is a cell-permeant, green-fluorescent dye that stains mitochondria in living cells in a membrane potential-dependent manner.General properties
Appearance: | brown crystals |
Mass spec M+ increment: | 345.30 |
Molecular weight: | 380.83 |
CAS number: | 62669-70-9 |
Molecular formula: | C21H17ClN2O3 |
Quality control: | NMR 1H and HPLC-MS (95+%) |
Storage conditions: | 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Desiccate. |
MSDS: | Download |
Product specifications |
Spectral properties
Excitation/absorption maximum, nm: | 511 |
ε, L⋅mol−1⋅cm−1: | 86000 |
Emission maximum, nm: | 531 |
Fluorescence quantum yield: | 0.98 |
Product citations
- Li, Z.; Zhang, L.; Zhou, L.; Li, X.; Zhao, Y.; Wang, J. Tunable Catalytic Release of Nitric Oxide via Copper-Loaded Coatings on Titanium Nanotubes for Regulating Biological Performance. Biosurface and Biotribology, 2023, 9(2), 45–57. doi: 10.1049/bsb2.12060